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Abstract

A Hamiltonian formulation of classes of distributed-parameter systems is presented, which incor-
porates the energy flow through the boundary of the spatial domain of the system, and which allows
to represent the system as a boundary control Hamiltonian system. The system is Hamiltonian with
respect to an infinite-dimensional Dirac structure associated with the exterior derivative and based
on Stokes’ theorem. The theory is applied to the telegraph equations for an ideal transmission line,
Maxwell’s equations on a bounded domain with non-zero Poynting vector at its boundary, and a
vibrating string with traction forces at its ends. Furthermore, the framework is extended to cover
Euler’s equations for an ideal fluid on a domain with permeable boundary. Finally, some prop-
erties of the Stokes–Dirac structure are investigated, including the analysis of conservation laws.
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MSC:70H05; 35B37; 35Q60; 76N10; 93C20

Keywords:Distributed-parameter systems; Hamiltonian systems; Boundary variables; Dirac structures; Stokes’
theorem; Conservation laws

1. Introduction

The Hamiltonian formulation of classes of distributed-parameter systems has been a
challenging and fruitful area of research for quite some time. (A nice introduction, especially
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with respect to systems stemming from fluid dynamics, can be found in [24], where also a
historical account is provided.) The identification of the underlying Hamiltonian structure
of sets of PDEs has been instrumental in proving all sorts of results on integrability, the
existence of soliton solutions, stability, reduction, etc. and in unifying existing results, see
e.g. [1,9,13,14,22,23].

Recently, there has been also a surge of interest in thedesignandcontrol of non-linear
distributed-parameter systems, motivated by various applications. At the same time, it is
well-known fromfinite-dimensionalnon-linear control systems [7,19,25,26,29–31,33] that
the (generalized) Hamiltonian formulation may be very helpful in the control design, and
even more is to be expected in the distributed-parameter case. However, in extending the
Hamiltonian theory as for instance exposed in [24] to distributed-parameter control systems
a fundamental difficulty arises in the treatment ofboundary conditions. Indeed, the treat-
ment of infinite-dimensional Hamiltonian systems in the literature seems mostly focused on
systems with infinite spatial domain, where the variables go to zero for the spatial variables
tending to infinity, or on systems with boundary conditions such that the energy exchange
through the boundary iszero. On the other hand, from a control and interconnection point
of view it is essential to be able to describe a distributed-parameter system with varying
boundary conditions inducingenergy exchange through the boundary, since in many ap-
plications, interaction with the environment (e.g. actuation or measurement) takes place
through the boundary of the system. Clear examples are the telegraph equations (describing
the dynamics of a transmission line), where the boundary of the system is described by the
behavior of the voltages and currents at both ends of the transmission line, or a vibrating
string (or, more generally, a flexible beam), where it is natural to consider the evolution of
the forces and velocities at the ends of the string. Furthermore, in both examples it is obvious
that in general the boundary exchange of power (voltage times current in the transmission
line example, and force times velocity for the vibrating string) will be non-zero, and that
in fact one would like to consider the voltages and currents or forces and velocities as ad-
ditional boundary variablesof the system, which can be interconnected to other systems.
Also for numerical integration andsimulationof complex distributed-parameter systems it
is essential to be able to describe the complex system as the interconnection or coupling of
its subsystems via their boundary variables; for example in the case of coupled fluid–solid
dynamics.

From a mathematical point of view, it is not obvious how to incorporate non-zero energy
flow through the boundary in the existing Hamiltonian framework for distributed-parameter
systems. The problem is already illustrated by the Hamiltonian formulation of e.g. the
Korteweg-de Vries equation (see e.g. [24]). Here for zero boundary conditions aPoisson
bracketcan be formulated with the use of the differential operator (d/dx), since by integration
by parts this operator is obviously skew-symmetric. However, for boundary conditions
corresponding to non-zero energy flow the differential operator is not skew-symmetric
anymore (since after integrating by parts the remainders are not zero). Also the interesting
paper [12] does not really solve this problem, since it is concerned with the modification of
the Poisson bracket in case of a free boundary.

In the present paper we provide a framework to overcome this fundamental problem by
using the notion of aDirac structure; extending and generalizing a preliminary and par-
tial treatment of this framework in [20,21]. Dirac structures were originally introduced in
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[6,8] as a geometric structure generalizing bothsymplecticandPoissonstructures. Later
on (see e.g. [2,7,18,31]) it was realized that in the finite-dimensional case Dirac structures
can be naturally employed to formalize Hamiltonian systems withconstraintsas implicit
Hamiltonian systems. It will turn out that in order to allow the inclusion of boundary vari-
ables in distributed-parameter systems the concept of Dirac structure again provides the
right type of generalization with respect to the existing framework using Poisson structures.
(In fact, already in [8] Dirac structures were employed for the Hamiltonian representation
of certain evolution equations. However, this treatment did not involve the inclusion of
boundary variables, and, in fact, the employed Dirac structures are equivalent to Poisson
structures.)

The Dirac structure for distributed-parameter systems used in this paper has a specific
form by being defined on certain spaces of differential forms on the spatial domain of the
system and its boundary, and making use of Stokes’ theorem. Its construction emphasizes
the geometrical content of the physical variables involved, by identifying them as differential
k-forms, for appropriatek. This interpretation is rather well-known (see e.g. [11]) in the case
of Maxwell’s equations (and actually directly follows from Faraday’s law and Ampère’s
law), but seems less well-known for the telegraph equations and the description of the
Euler’s equations for an ideal isentropic fluid. (Although, very much related formulations
of systems of partial differential equations have been studied within the general context of
conservation laws.)

From the systems and control point of view, the present paper can be seen as providing
the extension of the generalized Hamiltonian framework established for lumped-parameter
systems in [4,7,26,28–31] to the distributed-parameter case. In the lumped-parameter case
this Hamiltonian framework has been successfully employed in the consistent (modular)
modeling and simulation of complexinterconnectedlumped-parameter physical systems,
including (actuated) multi-body systems with kinematic constraints and electro-mechanical
systems [7,18,30,31], and in the design andcontrolof such systems, exploiting the Hamil-
tonian and passivity structure in a crucial way [19,25,26,29,30,33]. Similar developments
can be pursued in the distributed-parameter case; see already [27,32] for some initial ideas
in this direction.

The present paper is organized as follows. The main framework is established in Sec-
tion 2. After a general introduction to Dirac structures in Section 2.1 the definition of
a Stokes–Dirac structure is treated in Section 2.2. This paves the way for the Hamil-
tonian formulation of distributed-parameter systems with boundary variables in Section
2.3. In Section 3 this is applied to Maxwell’s equations on a bounded domain (Section
3.1), the telegraph equations for an ideal transmission line (Section 3.2), and the vi-
brating string (Section 3.3). Furthermore, by modifying the Stokes–Dirac structure with
an additional term corresponding to three-dimensional convection, Euler’s equations for
an ideal isentropic fluid are treated in Section 3.4. Finally, in Section 4 the properties
of Stokes–Dirac structures are further analyzed: Section 4.1 deals with the pseudo-
Poisson bracket associated to the Stokes–Dirac structure, Section 4.2 sets up the basic
notions of conservation laws and Casimir functions captured by the Stokes–
Dirac structure, while Section 4.3 deals with a covariant definition of Stokes–Dirac
structures and the resulting Hamiltonian systems. Finally, Section 5 contains the
conclusions.
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2. Hamiltonian formulation of distributed-parameter systems
with boundary energy flow

2.1. Dirac structures

The notion of a Dirac structure was originally introduced in [6,8] as a geometric structure
generalizing bothsymplecticandPoissonstructures. In [2,4,7,18,28–31], it was employed
as the geometrical notion formalizing generalpower-conserving interconnections, thereby
allowing the Hamiltonian formulation of interconnected and constrained mechanical and
electrical systems.

A definition of Dirac structures (which is actually slightly more general than the one in
[6,8]) can be given as follows. LetF andE be linear spaces, equipped with a pairing, that
is, a bilinear operation:

F × E → L (1)

with L a linear space. The pairing will be denoted by〈e|f 〉 ∈ L, f ∈ F, e ∈ E . By
symmetrizing the pairing we obtain a symmetric bilinear form〈〈·〉〉 onF × E , with values
in L, defined as

〈〈(f1, e1), (f2, e2)〉〉 := 〈e1|f2〉 + 〈e2|f1〉, (fi, ei) ∈ F × E (2)

Definition 2.1. LetF andE be linear spaces with a pairing〈|〉. A Dirac structure is a linear
subspaceD ⊂ F × E such thatD = D⊥, with ⊥ denoting the orthogonal complement
with respect to the bilinear form〈〈·〉〉.

Example 2.1. Let F be a linear space overR. Let E be given asF∗ (the space of linear
functionals onF), with pairing〈|〉 the duality product〈e|f 〉 ∈ R.

(a) LetJ : E → F be a skew-symmetric map. Then graphJ ⊂ F ×E is a Dirac structure.
(b) Letω : F → E be a skew-symmetric map. Then graphω ⊂ F ×E is a Dirac structure.
(c) LetV ⊂ F be a finite-dimensional linear subspace. ThenV ×V orth ⊂ F×E is a Dirac

structure, whereV orth ⊂ E is the annihilating subspace ofV . The same holds ifF is a
topological vector space,E is the space of linear continuous functionals onF , andV
is aclosedsubspace ofF .

Example 2.2. Let M be a finite-dimensional manifold. LetF = V (M) denote the Lie
algebra of smooth vector fields onM, and letE = Ω1(M) be the linear space of smooth
one-forms onM. Consider the usual pairing〈α|X〉 = iXα between one-formsα and vector
fieldsX; implying thatL is the linear space of smooth functions onM.

(a) LetJ be a Poisson structure onM, defining a skew-symmetric mappingJ : Ω1(M) →
V (M). Then graphJ ⊂ V (M) × Ω1(M) is a Dirac structure.

(b) Let ω be a presymplectic structure onM, defining a skew-symmetric mappingω :
V (M) → Ω1(M). Then graphω ⊂ V (M) × Ω1(M) is a Dirac structure.

(c) Let V be a constant-dimensional distribution onM, and let annV be its annihilating
co-distribution. ThenV × annV is a Dirac structure.
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Remark 2.1. Usually in Example 2.2 an additional integrability condition is imposed on
the Dirac structure, cf. [6,8]. In part (a) this condition is equivalent to theJacobi-identity
for the Poisson structure; in part (b) it is equivalent to theclosednessof the presymplectic
structure, while in part (c) it is equivalent to theinvolutivityof the distributionD. Integrability
is equivalent to the existence of canonical coordinates, cf. [6–8]. Various formulations of
integrability of Dirac structures and their implications have been worked out in [7]. For the
developments of the current paper the notion of integrability is not crucial; see however the
conclusions section for some comments in this direction.

From the defining propertyD = D⊥ of a Dirac structure it directly follows that for any
(f, e) ∈ D

0 = 〈〈(f, e), (f, e)〉〉 = 2〈e|f 〉 (3)

Thus, if (f, e) is a pair ofpower variables(e.g. currents and voltages in an electric circuit
context, or forces and velocities in a mechanical context), then the condition(f, e) ∈ D

implies power-conservation〈e|f 〉 = 0 (as do Kirchhoff’s laws or Newton’s third law).
This is the starting point for the geometric formulation of general power-conserving inter-
connections in physical systems by Dirac structures as alluded to above.

2.2. Stokes–Dirac structures

In this subsection we treat the underlying geometric framework for the Hamiltonian
formulation of distributed-parameter systems on a bounded spatial domain, with non-zero
energy flow through the boundary. The key concept is the introduction of a special type
of Dirac structure on suitable spaces of differential forms on the spatial domain and its
boundary, making use of Stokes’ theorem. A preliminary treatment of this Dirac structure
has been given in [20,21].

Throughout, letZ be ann-dimensional smooth manifold with smooth(n−1)-dimensional
boundary∂Z, representing the space ofspatial variables.

Denote byΩk(Z), k = 0,1, . . . , n, the space of exteriork-forms onZ, and byΩk(∂Z),

k = 0,1, . . . , n − 1, the space ofk-forms on∂Z. (Note thatΩ0(Z), respectivelyΩ0(∂Z),
is the space of smooth functions onZ, respectively∂Z.) Clearly,Ωk(Z) andΩk(∂Z) are
(infinite-dimensional) linear spaces (overR). Furthermore, there is a natural pairing between
Ωk(Z) andΩn−k(Z) given by

〈β|α〉 :=
∫
Z

β ∧ α, (∈ R) (4)

with α ∈ Ωk(Z), β ∈ Ωn−k(Z), where∧ is the usual wedge product of differential forms
yielding then-form β ∧ α. In fact, the pairing (4) isnon-degeneratein the sense that if
〈β|α〉 = 0 for all α, respectively, for allβ, thenβ = 0, respectivelyα = 0.

Similarly, there is a pairing betweenΩk(∂Z) andΩn−1−k(∂Z) given by

〈β|α〉 :=
∫
∂Z

β ∧ α (5)
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with α ∈ Ωk(∂Z), β ∈ Ωn−1−k(∂Z). Now let us define the linear space

Fp,q := Ωp(Z) × Ωq(Z) × Ωn−p(∂Z) (6)

for any pairp, q of positive integers satisfying

p + q = n + 1 (7)

and correspondingly let us define

Ep,q := Ωn−p(Z) × Ωn−q(Z) × Ωn−q(∂Z) (8)

Then the pairing (4) and (5) yields a (non-degenerate) pairing betweenFp,q andEp,q (note
that by Eq. (7)(n−p)+ (n− q) = n− 1). As before (see Eq. (2)), symmetrization of this
pairing yields the following bilinear form onFp,q × Ep,q with values inR:

〈〈(f 1
p , f

1
q , f

1
b , e

1
p, e

1
q, e

1
b), (f

2
p , f

2
q , f

2
b , e

2
p, e

2
q, e

2
b)〉〉

:=
∫
Z

[e1
p ∧ f 2

p + e1
q ∧ f 2

q + e2
p ∧ f 1

p + e2
q ∧ f 1

q ] +
∫
∂Z

[e1
b ∧ f 2

b + e2
b ∧ f 1

b ] (9)

where fori = 1,2

f i
p ∈ Ωp(Z), f i

q ∈ Ωq(Z)

eip ∈ Ωn−p(Z), eip ∈ Ωn−q(Z)

f i
b ∈ Ωn−p(∂Z), eib ∈ Ωn−q(∂Z)

(10)

The spaces of differential formsΩp(Z) andΩq(Z) will represent the energy variables
of two different physical energy domains interacting with each other, whileΩn−p(∂Z)

andΩn−q(∂Z) will denote the boundary variables whose (wedge) product represents the
boundary energy flow. For example, in Maxwell’s equations (Section 3.1) we will have
n = 3 andp = q = 2; with Ωp(Z) = Ω2(Z), respectivelyΩq(Z) = Ω2(Z), being the
space of electric field inductions, respectively magnetic field inductions, andΩn−p(∂Z) =
Ω1(∂Z) denoting the electric and magnetic field intensities at the boundary, with product
the Poynting vector.

Theorem 2.1. ConsiderFp,q andEp,q given inEqs. (6) and (8)withp, q satisfyingEq. (7),
and bilinear form〈〈·〉〉 given byEq. (9).Define the following linear subspaceD ofFp,q ×
Ep,q

D =
{
(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q |

[
fp

fq

]
=
[

0 (−1)rd

d 0

][
ep

eq

]
,

[
fb

eb

]
=
[

1 0

0 −(−1)n−q

][
ep|∂Z
eq|∂Z

]}
(11)

where|∂Z denotes restriction to the boundary∂Z, andr := pq+ 1. ThenD = D⊥, that is,
D is a Dirac structure.
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Proof. First we showD ⊂ D⊥, and secondlyD⊥ ⊂ D.

(i) D ⊂ D⊥ : let(f 1
p , f

1
q , f

1
b , e

1
p, e

1
q, e

1
b) ∈ D, and consider any(f 2

p , f
2
q , f

2
b , e

2
p, e

2
q, e

2
b) ∈

D. By substitution of Eq. (11) into Eq. (9) the right-hand side of Eq. (9) becomes∫
Z

[(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + (−1)re2
p ∧ de1

q + e2
q ∧ de1

p]

−(−1)n−q

∫
∂Z

[e1
q ∧ e2

p + e2
q ∧ e1

p] (12)

By the properties of the exterior derivative:

d(e2
q ∧ e1

p) = de2
q ∧ e1

p + (−1)n−qe2
q ∧ de1

p

d(e1
q ∧ e2

p) = de1
q ∧ e2

p + (−1)n−qe1
q ∧ de2

p

(13)

and by the properties of the wedge product:

e1
p ∧ de2

q = (−1)(n−p)(n−q+1)de2
q ∧ e1

p

e2
p ∧ de1

q = (−1)(n−p)(n−q+1)de1
q ∧ e2

p

(14)

Hence, the first and fourth term in the
∫
Z

integral in Eq. (12) can be rewritten as

(−1)re1
p ∧ de2

q + e2
q ∧ de1

p

= (−1)r+(n−p)(n−q+1)de2
q ∧ e1

p + e2
q ∧ de1

p

= (−1)n−qde2
q ∧ e1

p + e2
q ∧ de1

p = (−1)n−qd(e2
q ∧ e1

p) (15)

since byp+q = n+1 andr = pq+1, r+(n−p)(n−q+1) = r+(q−1)p = 2pq−
p + 1 and(−1)2pq−p+1 = (−1)1−p = (−1)n−q .

Similarly, the second term together with third term can be written as

e1
q ∧ de2

p + (−1)re2
p ∧ de1

q = (−1)n−qd(e1
q ∧ e2

p) (16)

Substitution of Eqs. (15) and (16) in the
∫
Z

integral in Eq. (12) then yields by Stokes’
theorem that this integral is equal to

(−1)n−q

∫
Z

d(e2
q ∧ e1

p) + d(e1
q ∧ e2

p) = (−1)n−q

∫
∂Z

[e1
q ∧ e2

p + e2
q ∧ e1

p] (17)

showing that Eq. (12) is zero, and thusD ⊂ D⊥.
(ii) D⊥ ⊂ D : let(f 1

p , f
1
q , f

1
b , e

1
p, e

1
q, e

1
b) ∈ D⊥, implying that for all elements(f 2

p , f
2
q , f

2
b ,

e2
p, e

2
q, e

2
b) ∈ D the right-hand side of Eq. (9) is zero, and hence by substitution of

Eq. (11)∫
Z

[(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + e2
p ∧ f 1

p + e2
q ∧ f 1

q ]

+
∫
∂Z

[e1
b ∧ e2

p − (−1)n−qe2
q ∧ f 1

b ] = 0 (18)
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for all e2
p, e

2
q . Now, consider firste2

p, e
2
q which are zero on the boundary∂Z, implying

that ∫
Z

[(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + e2
p ∧ f 1

p + e2
q ∧ f 1

q ] = 0 (19)

for all e2
p, e

2
q with e2

p|∂Z = e2
q |∂Z = 0. By the first line of Eqs. (13) and (14)

(−1)re1
p ∧ de2

q = (−1)r+(n−p)(n−q+1)de2
q ∧ e1

p = (−1)n−qde2
q ∧ e1

p

= (−1)n−qd(e2
q ∧ e1

p) − e2
q ∧ de1

p (20)

Similarly, by the second line of Eqs. (13) and (14)
e1
q ∧ de2

p = (−1)n−qd(e1
q ∧ e2

p) − (−1)n−qde1
q ∧ e2

p

e2
p ∧ f 1

p = (−1)(n−p)pf 1
p ∧ e2

p

(21)

Sincee2
p|∂Z = e2

q |∂Z = 0, substitution of Eqs. (20) and (21) into Eq. (19) then yields
by Stokes’ theorem∫

Z

[−e2
q ∧ de1

p − (−1)n−qde1
q ∧ e2

p + (−1)(n−p)pf 1
p ∧ e2

p + e2
q ∧ f 1

q ] = 0 (22)

for all e2
p, e

2
q with e2

p|∂Z = e2
q |∂Z = 0. Clearly, this implies

f 1
q = de1

p

(−1)(n−p)pf 1
p = (−1)(n−q)de1

q

(23)

where the last equality is easily seen to be equivalent to

f 1
p = (−1)rde1

q (24)

Finally, substitute Eqs. (23) and (24) into Eq. (18) to obtain∫ Z

[(−1)re1
p ∧ de2

q + e2
q ∧ de1

p + e1
q ∧ de2

p + (−1)re2
p ∧ de1

q ]

+
∫
∂Z

[e1
b ∧ e2

p − (−1)n−qe2
q ∧ f 1

b ] = 0 (25)

for all e2
p, e

2
q . Substituting again Eq. (20) and the first line of Eq. (21), noting that

(−1)n−qde1
q ∧ e2

p = (−1)re2
p ∧ de1

q , this yields∫
Z

[(−1)n−qd(e2
q ∧ e1

p) + (−1)n−qd(e1
q ∧ e2

p)]

+
∫
∂Z

[e1
b ∧ e2

p − (−1)n−qe2
q ∧ f 1

b ] = 0 (26)

and hence by Stokes’ theorem∫
∂Z

[(−1)n−qe2
q ∧ e1

p − (−1)n−qe2
q ∧ f 1

b + (−1)n−qe1
q ∧ e2

p + e1
b ∧ e2

p] = 0

(27)



174 A.J. van der Schaft, B.M. Maschke / Journal of Geometry and Physics 42 (2002) 166–194

for all e2
p, e

2
q , implying that

f 1
b = e1

p|∂Z
e1
b = −(−1)n−qe1

q |∂Z
(28)

showing that indeed(f 1
p , f

1
q , f

1
b , e

1
p, e

1
q, e

1
b) ∈ D. �

Remark 2.2. The spatialcompositionalityproperties of the Stokes–Dirac structure imme-
diately follow from its definition. Indeed, letZ1, Z2 be twon-dimensional manifolds with
boundaries∂Z1, ∂Z2, such that

∂Z1 = Γ ∪ Γ1, Γ ∩ Γ1 = φ

∂Z2 = Γ ∪ Γ2, Γ ∩ Γ2 = φ
(29)

for certain(n − 1)-dimensional manifoldsΓ, Γ1, Γ2 (that is,Z1 andZ2 have boundaryΓ
in common). Then the Stokes–Dirac structuresD1,D2 onZ1, respectivelyZ2, compose to
the Stokes–Dirac structure on the manifoldZ1 ∪ Z2 with boundaryΓ1 ∪ Γ2 if we equate
onΓ the boundary variablesf 1

b (corresponding toD1) with −f 2
b (corresponding toD2),

or if we reverse orientation. (Note that a minus sign is inserted in order to ensure that the
power flowinginto Z1 via Γ is equal to the power flowingoutof Z2 via Γ .)

2.3. Distributed-parameter port-Hamiltonian systems

The definition of a distributed-parameter Hamiltonian system with respect to a Stokes–
Dirac structure can now be stated as follows. LetZ be ann-dimensional manifold with
boundary∂Z, and letD be a Stokes–Dirac structure as in Section 2.2. Consider furthermore
aHamiltonian density(energy per volume element)

H : Ωp(Z) × Ωq(Z) × Z → Ωn(Z) (30)

resulting in the total energy

H :=
∫
Z

H ∈ R (31)

Recall, see Eq. (4), that there exists a non-degenerate pairing betweenΩp(Z)andΩn−p(Z),
respectively betweenΩq(Z) andΩn−q(Z). This means thatΩn−p(Z) andΩn−q(Z) can
be regarded asdual spacesto Ωp(Z), respectivelyΩq(Z) (although strictly contained in
their functional analytic duals). Let nowαp, ∂αp ∈ Ωp(Z), αq, ∂αq ∈ Ωq(Z). Then under
weak smoothness conditions onH

H(αp + ∂αp, αq + ∂αq) =
∫
Z

H(αp + ∂αp, αq + ∂αq, z)

=
∫
Z

H(αp, αq, z) +
∫
Z

[δpH ∧ ∂αp + δqH ∧ ∂αq ]

+ higher order terms in∂αp, ∂αq (32)
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for certain differential forms

δpH ∈ Ωn−p(Z)

δqH ∈ Ωn−q(Z)
(33)

Furthermore, from the non-degeneracity of the pairing betweenΩp(Z) andΩn−p(Z),
respectively betweenΩq(Z) andΩn−q(Z), it immediately follows that these differential
forms are uniquely determined. This means that(δpH, δqH) ∈ Ωn−p(Z) × Ωn−q(Z)

can be regarded as the (partial)variational derivatives(see e.g. [24]) ofH at (αp, αq) ∈
Ωp(Z) × Ωq(Z). Throughout this paper we shall assume that the HamiltonianH admits
variational derivatives satisfying Eq.(32).

Now consider a time-function

(αp(t), αq(t)) ∈ Ωp(Z) × Ωq(Z), t ∈ R (34)

and the HamiltonianH(αp(t), αq(t)) evaluated along this trajectory. It follows that at any
time t

dH

dt
=
∫
Z

[
δpH ∧ ∂αp

∂t
+ δqH ∧ ∂αq

∂t

]
(35)

The differential forms∂αp/∂t , ∂αq/∂t represent the generalized velocities of the energy
variablesαp, αq . They are connected to the Stokes–Dirac structureD by setting

fp = −∂αp

∂t

fq = −∂αq

∂t

(36)

(again the minus sign is included to have a consistent energy flow description). Since the
right-hand side of Eq. (35) is the rate of increase of the stored energyH ,
we set

ep = δpH

eq = δqH
(37)

(In network modeling terminologyδpH andδqH are called theco-energyvariables, which
are set equal to the effort variablesep, eq .) Now we come to the general Hamiltonian
description of a distributed-parameter system with boundary energy flow. In order to em-
phasize that the boundary variables are regarded asinterconnection variables, which can be
interconnected to other systems and whose product representspower, we call these mod-
elsport-Hamiltonian systems. (This terminology comes from network modeling, see e.g.
[16,31,30].)

Definition 2.2. The distributed-parameter port-Hamiltonian systemwith n-dimensional
manifold of spatial variablesZ, state spaceΩp(Z) × Ωq(Z) (with p + q = n + 1),
Stokes–Dirac structureD given by Eq. (11), and HamiltonianH , is given as
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(with r = pq+ 1)




−∂αp

∂t

−∂αq

∂t


 =

[
0 (−1)rd

d 0

][
δpH

δqH

]
,

[
fb

eb

]
=
[

1 0

0 −(−1)n−q

][
δpH |∂Z
δqH |∂Z

]
(38)

By the power-conserving property (3) of any Dirac structure it immediately follows that
for any(fp, fq, fb, ep, eq, eb) in the Stokes–Dirac structureD∫

Z

[ep ∧ fp + eq ∧ fq ] +
∫
∂Z

eb ∧ fb = 0 (39)

Hence, by substitution of Eqs. (36) and (37) and using Eq. (35) we obtain

Proposition 2.1. Consider the distributed-parameter port-Hamiltonian systemEq. (38).
Then

dH

dt
=
∫
∂Z

eb ∧ fb, (40)

expressing that the increase in energy on the domainZ is equal to the power supplied to
the system through the boundary∂Z.

The system (38) can be called a (non-linear)boundary controlsystem in the sense of e.g.
[10]. Indeed, we could interpretfb as the boundary control inputs to the system, andeb as
the measured outputs (or the other way around). In Section 3 we shall further elaborate on
this point of view.

Energy exchange through the boundary is not the only way a distributed-parameter system
may interact with its environment. An example of this is provided by Maxwell’s equations
(Section 3.1), where interaction may also take place via the current densityJ , which directly
affects the electric charge distribution in the domainZ. In order to cope with this situation
we augment the spacesFp,q, Ep,q as defined in Eqs. (6) and (8) to

Fa
q,p := Fp,q × Ωd(S)

Eaq,p := Ep,q × Ωn−d(S)
(41)

for somem-dimensional manifoldS and somed ∈ {0,1, . . . , m}, with f d ∈ Ωd(S)

denoting the externally supplied distributed control flow, anded ∈ Ωn−d(S) the conjugate
distributed quantity, corresponding to an energy exchange∫

S

ed ∧ f d (42)
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The Stokes–Dirac structure (11) is now extended to[
fp

fq

]
=
[

0 (−1)rd

d 0

][
ep

eq

]
+ G(fd),

[
fb

eb

]
=
[

1 0

0 −(−1)n−q

][
ep|∂Z
eq|∂Z

]
, ed = −G∗

[
ep

eq

]
(43)

with G denoting a linear map

G =
(

Gp

Gq

)
: Ωd(S) → Ωp(Z) × Ωq(Z) (44)

with dual map (again we considerΩn−p(Z) andΩn−q(Z) as dual spaces toΩp(Z), re-
spectivelyΩn−q(Z))

G∗ = (G∗
p,G

∗
q) : Ωn−p(Z) × Ωn−q(Z) → Ωn−d(S) (45)

satisfying∫
Z

[ep ∧ Gp(fd) + eq ∧ Gq(fd)] =
∫
S

[G∗
p(ep) + G∗

q(eq)] ∧ fd (46)

for all ep ∈ Ωn−p(Z), eq ∈ Ωn−q(Z), fd ∈ Ωd(S).
The following proposition can be easily checked.

Proposition 2.2. Eq. (43)determine a Dirac structureDa ⊂ Fa
p,q × Eap,q with respect to

the augmented bilinear form onFa
p,q × Eap,q which is obtained by adding to the bilinear

form (9) onFp,q × Ep,q the term∫
S

[e1
d ∧ f 2

d + e2
d ∧ f 1

d ] (47)

By making now the substitutions (36) and (37) intoDa given by Eq. (43) we obtain a
port-Hamiltonian system with external variables(fb, fd, eb, ed), with fb, eb theboundary
external variables andfd, ed the distributedexternal variables. Furthermore, the energy
balance (40) extends to

dH

dt
=
∫
∂Z

eb ∧ fb +
∫
S

ed ∧ fd (48)

with the first term on the right-hand side denoting the power flow through the boundary,
and the second term denoting the distributed power flow.

Finally,energy dissipationcan be incorporated in the framework of distributed-parameter
port-Hamiltonian systems byterminatingsome of the ports (boundary or distributed) with
a resistive relation. For example, for distributed dissipation, letR : Ωn−d(S) → Ωd(S) be
a map satisfying∫

S

ed ∧ R(ed) ≥ 0, ∀ed ∈ Ωn−d(S) (49)
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Then by adding the relation

fd = −R(ed) (50)

to the port-Hamiltonian system defined with respect to the Dirac structureDa , we obtain a
port-Hamiltonian systemwith dissipation, satisfying the energy inequality

dH

dt
=
∫
∂Z

eb ∧ fb −
∫
S

ed ∧ R(ed) ≤
∫
∂Z

eb ∧ fb (51)

3. Examples

In this section we show how the framework of distributed-parameter port-Hamiltonian
systems admits the representation of Maxwell’s equations, the telegraph equations of an
ideal transmission line, the vibrating string, and the Euler equations of an ideal isentropic
fluid.

3.1. Maxwell’s equations

We closely follow the formulation of Maxwell’s equations in terms of differential forms as
presented in [11], and show how this directly leads to the formulation as a distributed-parameter
port-Hamiltonian system.

Let Z ⊂ R3 be a three-dimensional manifold with boundary∂Z, defining the spatial
domain, and consider the electromagnetic field inZ. The energy variables are theelectric
field inductiontwo-formαp = D ∈ Ω2(Z):

D = 1
2Dij (t, z)dzi ∧ dzj (52)

and themagnetic field inductiontwo-formαq = B ∈ Ω2(Z):

B = 1
2Bij (t, z)dzi ∧ dzj (53)

The corresponding Stokes–Dirac structure(n = 3, p = 2, q = 2) is given as (cf. Eq. (11))[
fp

fq

]
=
[

0 −d

d 0

][
ep

eq

]
,

[
fb

eb

]
=
[

1 0

0 1

][
ep|∂Z
eq|∂Z

]
(54)

Usually in this case one doesnotstart with the definition of the total energy (Hamiltonian)
H , but instead with the co-energy variablesδpH, δqH , given, respectively, as the electric
field intensityE ∈ Ω1(Z):

E = Ei(t, z)dzi (55)

and the magnetic field intensityH ∈ Ω1(Z):

H = Hi(t, z)dzi (56)
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They are related to the energy variables through the constitutive relations of the medium
(or material equations)

∗D = εE

∗B = µH
(57)

with the scalar functionsε(t, z) andµ(t, z) denoting the electric permittivity, respectively
magnetic permeability, and∗ denoting the Hodge star operator (corresponding to a Rieman-
nian metric onZ), converting two- into one-forms. Then onedefinesthe HamiltonianH as

H =
∫
Z

1
2(E ∧D +H ∧ B) (58)

and one immediately verifies thatδpH = δDH = E, δqH = δBH = H.
Nevertheless there are other cases (corresponding to anon-lineartheory of the electro-

magnetic field, such as the Born-infield theory, see e.g. [11]) where one starts with a more
general HamiltonianH = ∫

Z
h, with the energy densityh(D, B) being a more general

expression than 1/2(ε−1 ∗D ∧D + µ−1 ∗ B ∧ B).
Assuming that there is no current in the medium Maxwell’s equations can now be written

as (see [11])

∂D

∂t
= dH

∂B

∂t
= −dE

(59)

Explicitly taking into account the behavior at the boundary, Maxwell’s equations on a
domainZ ⊂ R3 are then represented as the port-Hamiltonian system with respect to the
Stokes–Dirac structure given by Eq. (54), as

−∂D

∂t

−∂B

∂t


 =

[
0 −d

d 0

][
δDH

δBH

]
,

[
fb

eb

]
=
[
δDH |∂Z
δBH |∂Z

]
(60)

Note that the first line of Eq. (59) is nothing else than (the differential version of) Ampère’s
law, while the second line of Eq. (59) is Faraday’s law. Hence, the Stokes–Dirac structure
in Eqs. (59) and (60) expresses the basic physical laws connectingD,B,H andE .

The energy-balance equation (Eq. (40)) in the case of Maxwell’s equations takes the form

dH

dt
=
∫
∂Z

δBH ∧ δDH =
∫
∂Z

H ∧ E = −
∫
∂Z

E ∧H (61)

with E ∧H a two-form corresponding to thePoynting vector(see [11]).
In the case of a non-zerocurrent densitywe have to modify the first matrix equation of

(60) to


−∂D

∂t

−∂B

∂t


 =

[
0 −d

d 0

][
δDH

δBH

]
+
[
I

0

]
J (62)
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with I denoting the identity operator fromJ ∈ Ω2(Z) to Ω2(Z). (Thus, in the notation of
Eq. (44),fd = J , S = Z, andΩd(S) = Ω2(Z).) Furthermore, we add the equation

I 0

[
δDH

δBH

]
= −E (63)

yielding the augmented energy balance

dH

dt
= −

∫
∂Z

E ∧H−
∫
Z

E ∧ J (64)

which is known asPoynting’s theorem.
Finally, in order to incorporate energy dissipation we writeJ = Jd + J̄ , and we impose

Ohm’s law

∗Jd = σE (65)

with σ(t, z) the specific conductivity of the medium.

3.2. Telegraph equations

Consider an ideal lossless transmission line withZ = [0,1] ⊂ R. The energy variables
are the charge density one-formQ = Q(t, z)dz ∈ Ω1([0,1]), and the flux density one-form
ϕ = ϕ(t, z)dz ∈ Ω1([0,1]); thusp = q = n = 1. The total energy stored at timet in the
transmission line is given as

H(Q, ϕ) =
∫ 1

0

1

2

(
Q2(t, z)

C(z)
+ ϕ2(t, z)

L(z)

)
dz (66)

with co-energy variables

δQH = Q(t, z)

C(z)
= V (t, z), (voltage)

δϕH = ϕ(t, z)

L(z)
= I (t, z), (current)

(67)

whereC(z), L(z) are, respectively, the distributed capacitance and distributed inductance
of the line.

The resulting port-Hamiltonian system is given by the telegraph equations

∂Q

∂t
= −∂I

∂z
∂ϕ

∂t
= −∂V

∂z

(68)

together with the boundary variables

f 0
b (t) = V (t,0), f 1

b (t) = V (t,1)

e0
b(t) = −I (t,0), e1

b(t) = −I (t,1)
(69)
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The resulting energy-balance is

dH

dt
=
∫
∂([0,1])

ebfb = −I (t,1)V (t,1) + I (t,0)V (t,0), (70)

in accordance with Eq. (40).

3.3. Vibrating string

Consider an elastic string subject to traction forces at its ends. The spatial variablez

belongs to the intervalZ = [0,1] ⊂ R. Let us denote byu(t, z) the displacement of the
string. The elastic potential energy is a function of thestraingiven by the one-form

αq(t) = ε(t, z)dz = ∂u

∂z
(t, z)dz (71)

The associated co-energy variable is thestressgiven by the zero-form

σ = T ∗ αq (72)

with T the elasticity modulus and∗ the Hodge star operator. Hence, the potential energy is
the quadratic function

U(αq) =
∫ 1

0
σαq =

∫ 1

0
T ∗ αq ∧ αq =

∫ 1

0
T

(
∂u

∂z

)2

dz (73)

andσ = δqU .
The kinetic energyK is a function of the kineticmomentumdefined as the one-

form

αp(t) = p(t, z)dz (74)

given by the quadratic function

K(αp) =
∫ 1

0

p2

µ
dz (75)

The associated co-energy variable is thevelocitygiven by the zero-form

v = 1

µ
∗ αp = δpK (76)

In this case the Dirac structure is the Stokes–Dirac structure forn = p = q = 1, with an
opposite signconvention leading to the equations (withH := U + K)


−∂αp

∂t

−∂αq

∂t


 =

[
0 −d

−d 0

][
δpH

δqH

]
,

[
fb

eb

]
=
[

1 0

0 1

][
δpH |∂Z
δqH |∂Z

]
(77)
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or, in more down-to-earth notation

∂p

∂t
= ∂σ

∂z
= ∂

∂z
(T ε)

∂ε

∂t
= ∂v

∂z
= ∂

∂z

(
1

µ
p

)

fb = v|{0,1}

eb = σ |{0,1}

(78)

with boundary variables the velocity and stress at the ends of the string. Of course, by
substitutingε = ∂u/∂z into the second equation of (78) one obtains∂/∂z(∂u/∂t −p/µ) =
0, implying that

p = µ
∂u

∂t
+ µf (t) (79)

for some functionf , which may be set to zero. Substitution of Eq. (79) into the first equation
of (78) then yields the wave equation

µ
∂2u

∂t2
= ∂

∂z

(
T
∂u

∂z

)
(80)

3.4. Ideal isentropic fluid

Consider an ideal compressible isentropic fluid in three-dimensions, described in Eulerian
representation by the standard Euler equations

∂ρ

∂t
= −∇ · (ρv)

∂v

∂t
= −v · ∇v − 1

ρ
∇p

(81)

with ρ(z, t) ∈ R the mass density at the spatial positionz ∈ R3 at time t , v(z, t) ∈ R3

the (Eulerian) velocity of the fluid at spatial positionz and timet , andp(z, t) the pressure
function, derivable from an internal energy functionU(ρ) as

p(z, t) = ρ2(z, t)
∂U

∂ρ
(ρ(z, t)) (82)

Much innovative work has been done regarding the Hamiltonian formulation of Eq.(81) and
more general cases; we refer in particular to [1,13,14,22,23]. However, in these treatments
only closedfluid dynamical systems are being considered with no energy exchange through
the boundary of the spatial domain. As a result, a formulation in terms of Poisson structures
can be given, while as argued before, the general inclusion of boundary variables necessitates
the use of Dirac structures.

The formulation of Eq. (81) as a port-Hamiltonian system is given as follows. LetD ⊂ R3

be a given domain, filled with the fluid. We assume the existence of a Riemannian metric〈·〉
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onD; usually the standard Euclidean metric onR3. Let Z ⊂ D be any three-dimensional
manifold with boundary∂Z.

We identify the mass-densityρ with a three-form onZ (see e.g. [13,14]), that is, with
an element ofΩ3(Z). Furthermore, we identify the Eulerian vector fieldv with a one-form
on Z, that is, with an element ofΩ1(Z). (By the existence of the Riemannian metric on
Z we can, by “index raising” or “index lowering”, identify vector fields with one-forms
and vice versa.) The precise motivation for this choice of variables will become clear
later on. As a result we consider as the carrier spaces for the port-Hamiltonian formu-
lation of Eq. (81) the linear spacesFp,q and Ep,q for n = 3, p = 3, q = 1; that
is

Fp,q = Ω3(Z) × Ω1(Z) × Ω0(∂Z) (83)

and

Ep,q = Ω0(Z) × Ω2(Z) × Ω2(∂Z) (84)

Sincep + q = n + 1 we can define the corresponding Stokes–Dirac structureD given by
Eq. (11) onFp,q × Ep,q . However, as will become clear later on, due to three-dimensional
convection we need tomodifythis Stokes–Dirac structure with an additional term into the
following modified Stokes–Dirac structure

Dm : =
{
(fp, fv, fb, eρ, ev, eb) ∈ Ω3(Z) × Ω1(Z) × Ω0(∂Z) × Ω0(Z) × Ω2(Z)

×Ω2(∂Z),

[
fρ

fv

]
=




dev

deρ + 1

∗ρ ∗ ((∗dv) ∧ (∗ev))




×
[
fb

eb

]
=
[

eρ|∂Z
−ev|∂Z

]}
(85)

where∗ denotes the Hodge star operator (corresponding to the Riemannian metric on
Z), convertingk-forms onZ to (3 − k)-forms. A fundamental difference of the modified
Stokes–Dirac structureDm with respect to the standard Stokes–Dirac structureD is that
Dm explicitly depends on the energy variablesρ andv (via the terms∗ρ and dv in the
additional term(1/ ∗ ρ) ∗ ((∗dv) ∧ (∗ev))).

Completely similar to the proof of Theorem 2.1 it is shown that(Dm(ρ, v))⊥ = Dm(ρ, v)

for all ρ, v; the crucial additional observation is that the expression

e2
v ∧ ∗((∗dv) ∧ (∗e1

v)) (86)

is skew-symmetricin e1
v, e

2
v ∈ Ω2(Z).

Remark 3.1. In the standard Euclidean metric, identifying via the Hodge star operator
two-formsβi with one-forms, and representing one-forms as vectors, we have in vector
calculus notation the equality

β2 ∧ ∗(α ∧ ∗β1) = α · (β1 × β2) (87)
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for all two-forms β1, β2 and one-formsα. This shows clearly the skew-symmetry of
Eq. (86).

The Eulerian equations (81) for an ideal isentropic fluid are obtained in the port-controlled
Hamiltonian representation by considering the Hamiltonian

H(ρ, v) :=
∫
Z

[ 1
2〈v9, v9〉ρ + U(∗ρ)ρ] (88)

with v9 the vector field corresponding to the one-formv (“index lowering”), andU(∗ρ) the
internal energy. Indeed, by making the substitutions (36) and (37) inDm, and noting that

gradH = (δρH, δvH) =
(

1

2
〈v9, v9〉 + ∂

∂ρ̃
(ρ̃U(ρ̃)), iv9ρ

)
(89)

with ρ̃ := ∗ρ, the port-Hamiltonian system takes the form

−∂ρ

∂t
= d(iv9ρ)

−∂v

∂t
= d

(
1

2
〈v9, v9〉 + w(∗ρ)

)
+ 1

∗ρ
(
(∗dv) ∧ (∗iv9ρ)

)

fb =
[

1
2〈v9, v9〉 + w(∗ρ)

]
|∂Z

eb = −iv9ρ|∂Z

(90)

with

w(ρ̃) := ∂

∂ρ̃
(ρ̃U(ρ̃)) (91)

the enthalpy. The expressionδρH = (1/2)〈v9, v9〉 + w(ρ̃) is known as theBernoulli
function.

The first two equations of (90) can be seen to represent the Eulerian equations (81). The
first equation corresponds to the basic law ofmass-balance

d

dt

∫
ϕt (V )

ρ = 0 (92)

whereV denotes an arbitrary volume inZ, andϕt is the flow of the fluid (transforming the
material volumeV at t = 0 to the volumeϕt (V ) at timet). Indeed, Eq. (92) for anyV is
equivalent to

∂ρ

∂t
+ Lv9ρ = 0 (93)

Since by Cartan’s magical formulaLv9ρ = d(iv9ρ) + iv9dρ = d(iv9ρ) (since dρ = 0) this
yields the first line of Eq. (90). It also makes clear the interpretation ofρ as a three-form
onZ.

For the identification of the second equation of (90) with the second equation of (86) we
note the following (see [32] for further details). Interpret∇· in Eq. (81) as the covariant
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derivative corresponding to the assumed Riemannian metric〈·〉 onZ. For a vector fieldu
onZ, letu; denote the corresponding one-formu; := iu〈·〉 (“index raising”). The covariant
derivative∇ is related to the Lie derivative by the following formula (see for a proof [1],
p. 202)

Luu
; = (∇uu)

; + 1
2 d〈u, u〉 (94)

Since by Cartan’s magical formulaLuu
; = iudu; + d(iuu;) = iudu; + d〈u, u〉, Eq. (94)

can be also written as

(∇uu)
; = iudu; + 1

2 d〈u, u〉 (95)

(This is the coordinate-free analog of the well-known vector calculus formulau · ∇u =
curlu × u + (1/2)∇|u|2.) Furthermore, we have the identity

iv9dv = 1

∗ρ ∗ ((∗dv) ∧ (∗iv9ρ)) (96)

Finally, we have the following well-known relation between enthalpy and pressure (obtained
from Eqs. (82) and (91))

1

ρ̃
dp = d(w(ρ̃)) (97)

Hence, by Eq. (95)–(97) (withu = v9), we may rewrite the second equation of (90) as

−∂v

∂t
= (∇v9v

9
); + 1

∗ρ dp (98)

which is the coordinate-free formulation of the second equation of (81).
The boundary variablesfb andeb given in Eq. (90) are respectively thestagnation pressure

at the boundary divided byρ, and the (incoming)mass flowthrough the boundary. The
energy-balance Eq. (40) can be written out as

dH

dt
=
∫
∂Z

eb ∧ fb = −
∫
∂Z

iv9ρ ∧
[

1
2〈v9, v9〉 + w(∗ρ)

]

= −
∫
∂Z

iv9

[
1
2〈v9, v9〉ρ + w(∗ρ)ρ

]

= −
∫
∂Z

iv9

[
1
2〈v9, v9〉ρ + U(∗ρ)ρ

]
−
∫
∂Z

iv9(∗p) (99)

where for the last equality we have used the relation (following from Eqs. (82) and (91))

w(∗ρ)ρ = U(∗ρ)ρ + ∗p (100)

The first term in the last line of Eq. (99) corresponds to the convected energy through the
boundary∂Z, while the second term is (minus) the external work (static pressure times
velocity).

Usually, the second line of the Euler equations (81) (or equivalently equation (98)) is
obtained from the basic conservation law of momentum-balance together with the first line
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of Eq. (81). Alternatively, emphasizing the interpretation ofv as a one-form, we may obtain
it from Kelvin’s circulation theorem

d

dt

∫
ϕt (C)

v = 0 (101)

whereC denotes anyclosedcontour. Indeed, Eq. (101) for any closedC is equivalent to
the one-form∂v/∂t + Lv9v beingclosed. By Eq. (94) this is equivalent to requiring

∂v

∂t
+ (∇v9v

9); (102)

to be closed, that is

∂v

∂t
+ (∇v9v

9); = −dk (103)

for some (possibly locally defined)k : Z → R. Now additionally requiring that this function
k depends onz throughρ, that is

k(z) = w(ρ(z)) (104)

for some functionw, we recover Eq. (98) with(1/ ∗ ρ)dp replaced by dw (the differential
of the enthalpy).

Remark 3.2. In the case of a one- or two-dimensional fluid flow the extra term in the
Dirac structureDm as compared with the standard Stokes–Dirac structureD vanishes,
and so in these cases we are back to the standard definition of a distributed-parameter
port-Hamiltonian system (withρ being a one-form, respectively, a two-form).

Furthermore, if in the three-dimensional case the two-form dv(t) happens to be zero at a
certain time-instantt = t0 (irrotational flow), then itcontinuesto be zero for all timet ≥ t0.
Hence, also in this case the extra term Eq. (86) in the modified Stokes–Dirac structureDm

vanishes, and the port-Hamiltonian system describing the Euler equations reduces to the
standard distributed-parameter port-Hamiltonian system given in Definition 2.2.

4. Properties of Stokes–Dirac structures

4.1. Poisson brackets associated to Stokes–Dirac structures

Although, Dirac structures strictly generalize Poisson structures we can associate a
pseudo-Poisson structure to any Dirac structure as defined in Section 2.1. Indeed, letD ⊂
F×E be a Dirac structure as given in Definition 2.1. Then we can define a skew-symmetric
bilinear form on a subspace ofE ; basically following [6,8]. First, define the space of “ad-
missible efforts”

Eadm = {e ∈ E |∃f ∈ F such that(f, e) ∈ D} (105)

Then we define onEadm the bilinear form

[e1, e2] := 〈e1|f2〉 ∈ L (106)
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wheref2 ∈ F is such that(f2, e2) ∈ D. This bilinear form is well-defined, since for any
otherf ′

2 ∈ F such that(f ′
2, e2) ∈ D we obtain by linearity(f2 − f ′

2,0) ∈ D, and hence

0 = 〈〈(f1, e1), (f2 − f ′
2,0)〉〉 = 〈e1|f2〉 − 〈e1|f ′

2〉 (107)

Furthermore, [·] is skew-symmetricsince for any(f1, e1), (f2, e2) ∈ D

0 = 〈〈(f1, e1), (f2, e2)〉〉 = 〈e1|f2〉 + 〈e2|f1〉 (108)

Now, let us define onF the set ofadmissible mappings

Kadm = {k : F → L|∀a ∈ F ∃e(k, a) ∈ Eadm,

such that, for all ∂a ∈ F, k(a + ∂a) = k(a) + 〈e(k, a)|∂a〉 + O(∂a)} (109)

Note thate(k, a) (if it exists) is uniquely defined modulo the following linear subspace
of E

E0 = {e ∈ E |〈e|f 〉 = 0 for allf ∈ F} (110)

We calle(k, a) (in fact, its equivalence class) thederivativeof k at a, and we denote it by
δk(a). We define onKadm the following bracket:

{k1, k2}D(a) := [δk1(a), δk2(a)], k1, k2 ∈ Kadm (111)

which is clearly independent from the choice of the representantsδk1(a), δk2(a). By
skew-symmetry of [·] it immediately follows that also{·} is skew-symmetric. The Jacobi-
identity for {·}D, however, is not automatically satisfied, and we call therefore{·}D a
pseudo-Poisson bracket.

For the Stokes–Dirac structureD of Theorem 2.1, given in Eq. (11), the bracket takes
the following form. The set of admissible functionsKadm consists of those functions

k : Ωp(Z) × Ωq(Z) × Ωn−p(∂Z) → R (112)

whose derivatives

δk(z) = (δpk(z), δqk(z), δbk(z)) ∈ Ωn−p(Z) × Ωn−q(Z) × Ωn−q(∂Z) (113)

satisfy (cf. the last line of Eq. (11))

δbk(z) = −(−1)n−qδqk(z)|∂Z (114)

Furthermore, the bracket onKadm is given as (leaving out the argumentsz)

{k1, k2}D =
∫
Z

[δpk
1 ∧ (−1)r d(δqk

2) + (δqk
1) ∧ d(δpk

2)]

−
∫
∂Z

(−1)n−q(δqk
1) ∧ (δpk

2) (115)

It follows from the general considerations above that this bracket is skew-symmetric. (This
can be also directly checked using Stokes’ theorem.) Furthermore, in this case it is straight-
forward to check that{·}D also satisfies the Jacobi-identity

{{k1, k2}D, k3}D + {{k2, k3}D, k1} + {{k3, k1}D, k2}D = 0 (116)

for all ki ∈ Kadm.
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For the modified Stokes–Dirac structureDm given in Eq. (85) the spaceKadmis the same,
but the resulting skew-symmetric bracket has an additional term:

{k1, k2}Dm =
∫
Z

[(δρk
1) ∧ (−1)rd(δqk

2) + (δqk
1) ∧ d(δpk

2)

+ 1

∗ρ δvk
1 ∧ ∗((∗dv) ∧ (∗δvk2))] −

∫
∂Z

(−1)n−q(δqk
1) ∧ (δpk

2)

(117)

(For the skew-symmetry of the additional term see Eq. (86) and Remark 3.1.)

4.2. Conservation laws of port-Hamiltonian systems

Let us consider the distributed-parameter port-Hamiltonian systemΣ , as defined in Defi-
nition 2.2, on ann-dimensional spatial domainZ having state spaceΩp(Z)×Ωq(Z) (with
p + q = n + 1) and Stokes–Dirac structureD given by Eq. (11).

Conservation lawsfor Σ , which areindependentfrom the HamiltonianH , are obtained
as follows. Let

C : Ωp(Z) × Ωq(Z) × Z → R (118)

be a function satisfying

d(δpC) = 0, d(δqC) = 0 (119)

where d(δpC), d(δqC) are defined similarly to Eq. (33). Then the time-derivative ofC along
the trajectories ofΣ is given as (in view of Eq. (119), and using similar calculations as in
the proof of Theorem 2.1)

d

dt
C =

∫
Z

δpC ∧ α̇p +
∫
Z

δqC ∧ α̇q

= −
∫
Z

δpC ∧ (−1)rd(δqH) −
∫
Z

δqC ∧ d(δpH)

= −(−1)n−q

∫
Z

d(δqH ∧ δpC) − (−1)n−q

∫
Z

d(δqC ∧ δpH)

=
∫
∂Z

eb ∧ f C
b +

∫
∂Z

eCb ∧ fb (120)

where we have denoted, in analogy with Eq. (11),

f C
b := δpC|∂Z, eCb := −(−1)n−qδqC|∂Z (121)

In particular, if additionally to Eq. (119) the functionC satisfies

δpC|∂Z = 0, δqC|∂Z = 0 (122)

then dC/dt = 0 along the system trajectories ofΣ for any HamiltonianH . Therefore,
a functionC satisfying Eqs. (119) and (122) is called aCasimir function. If C satisfies
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Eq. (119) but not Eq. (122) thenC is called aconservation lawfor Σ : its time-derivative is
determined by the boundary conditions ofΣ .

Example 4.1. In the case of the telegraph equations (Section 3.2) the total charge

CQ =
∫ 1

0
Q(t, z)dz

as well as the total magnetic flux

Cϕ =
∫ 1

0
ϕ(t, z)dz

are both conservation laws. Indeed

d

dt
CQ = −

∫ 1

0

∂I

∂z
= I (0) − I (1)

d

dt
Cϕ = −

∫ 1

0

∂V

∂z
dz = V (0) − V (1)

Similarly, in the case of the vibrating string (Section 3.3) conservation laws are

d

dt

∫ 1

0
ε(t, z)dz = d

dt
(u(t,1) − u(t,0)) = v(t,1) − v(t,0)

d

dt

∫ 1

0
p(t, z)dz = σ(t,1) − σ(t,0)

Conservation lawsC for Σ which aredependenton the HamiltonianH are obtained by
replacing Eq. (119) by the weaker condition

δqH ∧ d(δpC) + (−1)rδpH ∧ d(δqC) = 0 (123)

Indeed, it immediately follows from the computation in Eq. (120) that under this condition
(120) continues to hold.

In the case of the modified Stokes–Dirac structureDm defined in Eq. (85), for any function
C : Ω3(Z) × Ω1(Z) × Z → R satisfying

δvH ∧ d(δpC) + δρH ∧ d(δvC) = 0, ρ ∈ Ω3(Z), v ∈ Ω1(Z) (124)

Eq. (120) takes the form

d

dt
C =

∫
Z

δρC ∧ d(δvH) +
∫
Z

δvC ∧
[
d(δρH) + 1

∗ρ ∗ ((∗dv) ∧ (∗δvH))

]

=
∫
∂Z

δρC ∧ δvH +
∫
∂Z

δvC ∧ δρH +
∫
Z

1

∗ρ δvC ∗ ((∗dv) ∧ (∗δvH)) (125)



190 A.J. van der Schaft, B.M. Maschke / Journal of Geometry and Physics 42 (2002) 166–194

Hence, we conclude that in order to obtain a conservation law we need to impose an extra
condition eliminating the last

∫
Z

integral. A specific example of a conservation law in this
case is thehelicity

C =
∫
Z

v ∧ dv (126)

with time-derivative
d

dt
C = −

∫
∂Z

fb ∧ dv (127)

A secondclass of conserved quantities corresponding to the Stokes–Dirac structureD

(Eq. (11)) is identified by noting that by Eq. (38)

−d

(
∂αp

∂t

)
= (−1)rd(dδqH) = 0

−d

(
∂αq

∂t

)
= d(dδpH) = 0

(128)

and thus the differential forms dαp and dαq do not depend on time. Therefore, the com-
ponent functions of dαp and dαq are conserved quantities of any port-Hamiltonian system
corresponding toD.

Example 4.2. In the case of Maxwell’s equations (Section 3.1) this yields that dD and dB
are constant three-forms. The three-form dD is thecharge density(Gauss’ electric law),
while by Gauss’ magnetic law dB is actually zero.

In the case of an ideal isentropic fluid (Section 3.4) for which the vorticity dv(t0, z) is
zeroat a certain timet0 we obtain by the same reasoning (since the additional term in the
Stokes–Dirac structureDm is zero fort0) that dv(t, z) is zero for all t ≥ t0 (irrotational
flow); cf. Remark 3.2.

4.3. Covariant formulation of port-Hamiltonian systems

A covariant formulation of distributed-parameter port-Hamiltonian systems can be ob-
tained following a construction which is well-known for Maxwell’s equations (see [11]),
and directly generalizes to port-Hamiltonian systems (38) defined with respect to a general
Stokes–Dirac structureD.

Define onZ ×R with coordinates(z, t) (that is, space–time) thep-, respectivelyq-form

γp := αp + (−1)rδqH ∧ dt

γq := αq + δpH ∧ dt
(129)

Then the first part of the Eq. (38) can be equivalently stated as

L∂/∂t d̄γp = 0

L∂/∂t d̄γq = 0
(130)

with d̄ denoting the exterior derivative onZ × R (with respect toz andt).
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Indeed, Eq. (130) means thatd̄γp andd̄γq do not depend ont , that is,

d̄γp = βp

d̄γq = βq

(131)

for certain(p + 1)- and(q + 1)-formsβp, respectivelyβq , not depending ont . Writing out
Eq. (131) yields (with ‘d’ denoting the exterior derivative with respect toz)

dαp + ∂αp

∂t
∧ dt + (−1)rd(δqH) ∧ dt = βp

dαq + ∂αq

∂t
∧ dt + d(δpH) ∧ dt = βq

(132)

resulting in the equations of a port-Hamiltonian system (38)

−∂αp

∂t
= (−1)rd(δqH)

−∂αq

∂t
= d(δpH)

(133)

together with the conserved quantities (cf. Section 4.2) dαp = βp,dαq = βq .
Furthermore, the boundary variables of the port-Hamiltonian system (38) can be re-

formulated as

(i∂/∂t γq)|∂Z = fb

(i∂/∂t γp)|∂Z = (−1)qeb
(134)

5. Conclusions and final remarks

The main results of this paper concern the definition of a Dirac structure which allows
the Hamiltonian formulation of a large class of distributed-parameter systems with bound-
ary energy-flow, including the examples of the telegraph equations, Maxwell’s equations,
vibrating strings and ideal isentropic fluids. It has been argued that in order to incorporate
boundary variables into this formulation the notion of a Dirac structure provides the appro-
priate generalization of the more commonly used notion of a Poisson structure for evolution
equations. The employed Dirac structure is based on Stokes’ theorem, and emphasizes the
geometrical content of the variables as being differentialk-forms.

From a physical point of view the Stokes–Dirac structure captures thebalance laws
inherent to the system, like Faraday’s and Ampère’s law (in Maxwell’s equations), or
mass-balance (in the case of an ideal fluid). This situation is quite similar to the lumped-
parameter case where the Dirac structure incorporates the topological interconnection laws
(Kirchhoff’s laws, Newton’s third law) and other interconnection constraints (see e.g.
[18,17,31]).

Hence, the starting point for the Hamiltonian description in this paper is different from
the more common approach ofderivingHamiltonian equations from a variational principle
and its resulting Lagrangian equations, or (very much related) a Hamiltonian formulation
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starting from a state space being a co-tangent bundle endowed with its natural symplectic
structure. In the case of Maxwell’s equations this results in the use of the basic physical
variablesD andB (the electric and magnetic field inductions), instead of the use of the
variableD (or E) together with thevector potentialA (with dA = B) in the symplectic
formulation of Maxwell’s equations. It should be of interest to compare both approaches
more closely, also in the context of the natural multi-symplectic structures which have been
formulated for the Hamiltonian formulation of Lagrangian field equations; see e.g. [5,15].
Another related issue in this context is the“canonicity” of the Stokes–Dirac structure (as
compared with the canonicity of the symplectic structure on cotangent bundles and the
multi-symplectic structures). Indeed, the Stokes–Dirac structure as defined in Theorem 2.1
satisfies the usual integrability condition for Dirac structures [6–8], since it is a constant
Dirac structure. Thus, one could expect to be able to find “canonical coordinates” for the
Stokes–Dirac structure, in which it takes (almost) the form of a canonical symplectic form.
(The modified Stokes–Dirac structureDm defined in Eq. (85) is not constant anymore, but
still is conjectured to be integrable.)

A very prominent and favorable property of Dirac structures is that they areclosed under
power-conserving interconnection. This has been formally proven in the finite-dimensional
case in [18,29], but the result should carry through to the infinite-dimensional case as well.
It is a property of fundamental importance since it enables to link port-Hamiltonian sys-
tems (lumped- or distributed-parameter) to each other to obtain an interconnected port-
Hamiltonian system with total energy being the sum of the Hamiltonians of its constituent
parts. Clearly, this is very important in modeling (coupling e.g. solid components with fluid
components, or finite-dimensional electric components with transmission lines), as well as in
control. First of all, it enables to formulate directly distributed-parameter systems withcon-
straintsas (implicit) Hamiltonian systems, like this has been done in the finite-dimensional
case for mechanical systems with kinematic constraints [7,31], multi-body systems [3,18],
and general electrical networks [2,31]. Secondly, from the control perspective the notion of
feedback control can be understood on its most basic level as the coupling of given physical
components with additional control components (being themselves physical systems, or
software components linked to sensors and actuators). A preliminary study from this point
of view of a control scheme involving transmission lines has been provided in [27]. Among
others, this opens up the way for the application of passivity-based control techniques,
which have been proven to be very effective for the control of lumped-parameter physical
systems modeled as port-Hamiltonian systems.
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